D03 — Partial Differential Equations DO3PXF

NAG Fortran Library Routine Document
DO3PXF

Note: before using this routine, please read the Users” Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

DO3PXF calculates a numerical flux function using an Exact Riemann Solver for the Euler equations in
conservative form. It is designed primarily for use with the upwind discretization schemes DO3PFF,
DO3PLF or DO3PSF, but may also be applicable to other conservative upwind schemes requiring numerical
flux functions.

2 Specification

SUBROUTINE DO3PXF (ULEFT, URIGHT, GAMMA, TOL, NITER, FLUX, IFAIL)

INTEGER NITER, IFAIL
double precision ULEFT(3), URIGHT(3), GAMMA, TOL, FLUX(3)

3 Description

DO3PXF calculates a numerical flux function at a single spatial point using an Exact Riemann Solver (see
Toro (1996) and Toro (1989)) for the Euler equations (for a perfect gas) in conservative form. You must
supply the left and right solution values at the point where the numerical flux is required, i.e., the initial
left and right states of the Riemann problem defined below. In DO3PFF, DO3PLF and DO3PSF, the left and
right solution values are derived automatically from the solution values at adjacent spatial points and
supplied to the (sub)program argument NUMFLX from which you may call DO3PXF.

The Euler equations for a perfect gas in conservative form are:
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where p is the density, m is the momentum, e is the specific total energy and ~ is the (constant) ratio of
specific heats. The pressure p is given by

p=tr-n(e-2). ®)

where u = m/p is the velocity.

The routine calculates the numerical flux function F(U;,Ug) = F(U" (U, Uyg)), where U = U; and
U = Uy are the left and right solution values, and U*(U;, Uy) is the intermediate state w(0) arising from
the similarity solution U(y,¢) = w(y/t) of the Riemann problem defined by
ou N OF
o Oy
with U and F as in (2), and initial piecewise constant values U = U; for y < 0 and U = Uy for y > 0.
The spatial domain is —oo < y < oo, where y = 0 is the point at which the numerical flux is required.

0, (4)

The algorithm is termed an Exact Riemann Solver although it does in fact calculate an approximate
solution to a true Riemann problem, as opposed to an Approximate Riemann Solver which involves some
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form of alternative modelling of the Riemann problem. The approximation part of the Exact Riemann
Solver is a Newton—Raphson iterative procedure to calculate the pressure, and you must supply a tolerance
TOL and a maximum number of iterations NITER. Default values for these parameters can be chosen.

A solution cannot be found by this routine if there is a vacuum state in the Riemann problem (loosely
characterised by zero density), or if such a state is generated by the interaction of two non-vacuum data
states. In this case a Riemann solver which can handle vacuum states has to be used (see Toro (1996)).

4 References

Toro E F (1989) A weighted average flux method for hyperbolic conservation laws Proc. Roy. Soc. Lond.
A423 401-418

Toro E F (1996) Riemann Solvers and Upwind Methods for Fluid Dynamics Springer—Verlag

5 Parameters

1: ULEFT(3) — double precision array Input

On entry: ULEFT(i) must contain the left value of the component U;, for i =1,2,3. That is,
ULEFT(1) must contain the left value of p, ULEFT(2) must contain the left value of m and
ULEFT(3) must contain the left value of e.

2: URIGHT(3) — double precision array Input

On entry: URIGHT (i) must contain the right value of the component U;, for i = 1,2,3. That is,
URIGHT(1) must contain the right value of p, URIGHT(2) must contain the right value of m and
URIGHT(3) must contain the right value of e.

3: GAMMA — double precision Input
On entry: the ratio of specific heats, .
Constraint: GAMMA > 0.0.

4: TOL — double precision Input

On entry: the tolerance to be used in the Newton—Raphson procedure to calculate the pressure. If
TOL is set to zero then the default value of 1.0 x 10~ is used.

Constraint. TOL > 0.0.

5: NITER — INTEGER Input

On entry: the maximum number of Newton—Raphson iterations allowed. If NITER is set to zero
then the default value of 20 is used.

Constraint: NITER > 0.

6: FLUX(3) — double precision array Output

On exit: FLUX(i) contains the numerical flux component F;, for i = 1,2, 3.

7: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this parameter you should
refer to Chapter PO1 for details.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter the
recommended value is 0. When the value —1 or 1 is used it is essential to test the value of
IFAIL on exit.
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Note: if the left and/or right values of p or p (from (3)) are found to be negative, then the routine
will terminate with an error exit (IFAIL = 2). If the routine is being called from the user-supplied
(sub)program NUMFLX etc., then a soft fail option (IFAIL =1 or —1) is recommended so that a
recalculation of the current time step can be forced using the NUMFLX parameter IRES (see
DO3PFF, DO3PLF or DO3PLF).

6  Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL =1
On entry, GAMMA < 0.0,
or TOL < 0.0,
or NITER < 0.
IFAIL =2

On entry, the left and/or right density or derived pressure value is less than 0.0.

IFAIL =3
A vacuum condition has been detected therefore a solution cannot be found using this routine. You
are advised to check your problem formulation.

IFAIL = 4

The internal Newton—Raphson iterative procedure used to solve for the pressure has failed to
converge. The value of TOL or NITER may be too small, but if the problem persists try an
Approximate Riemann Solver (DO3PUF, DO3PVF or DO3PWF).

7  Accuracy

The algorithm is exact apart from the calculation of the pressure which uses a Newton—Raphson iterative
procedure, the accuracy of which is controlled by the parameter TOL. In some cases the initial guess for
the Newton—Raphson procedure is exact and no further iterations are required.

8 Further Comments

DO3PXF must only be used to calculate the numerical flux for the Euler equations in exactly the form
given by (2), with ULEFT(i) and URIGHT(i) containing the left and right values of p,m and e, for
i=1,2,3, respectively.

For some problems the routine may fail or be highly inefficient in comparison with an Approximate
Riemann Solver (e.g., DO3PUF, DO3PVF or DO3PWF). Hence it is advisable to try more than one
Riemann solver and to compare the performance and the results.

The time taken by the routine is independent of all input parameters other than TOL.

9 Example

This example uses DO3PLF and DO3PXF to solve the Euler equations in the domain 0 <x <1 for
0 < ¢t < 0.035 with initial conditions for the primitive variables p(x, ), u(x,?) and p(x,?) given by

p(x,0) =5.99924, u(x,0) = 19.5975, p(x,0) =460.894,  for x < 0.5,
p(x,0) = 5.99242, u(x,0) = —6.19633, p(x,0) = 46.095,  forx > 0.5.

This test problem is taken from Toro (1996) and its solution represents the collision of two strong shocks
travelling in opposite directions, consisting of a left facing shock (travelling slowly to the right), a right
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travelling contact discontinuity and a right travelling shock wave. There is an exact solution to this
problem (see Toro (1996)) but the calculation is lengthy and has therefore been omitted.

9.1 Program Text

* DO3PXF Example Program Text
* Mark 19 Revised. NAG Copyright 1999.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NPDE, NPTS, NCODE, NXI, NEQN, NIW, NWKRES,
+ LENODE, MLU, NW
PARAMETER (NPDE=3,NPTS=141,NCODE=0,NXI=0,
+ NEQN=NPDE *NPTS+NCODE ,NIW=NEQN+24,
+ NWKRES=NPDE * (2*NPTS+3*NPDE+32)+7*NPTS+4,
+ LENODE=9*NEQN+50, MLU=3*NPDE-1,NW=(3*MLU+1)
+ *NEQN+NWKRE S+LENODE )
* .. Scalars in Common
DOUBLE PRECISION ELO, ERO, GAMMA, RLO, RRO, ULO, URO
* .. Local Scalars
DOUBLE PRECISION D, P, TOUT, TS, V
INTEGER I, IFAIL, IND, ITASK, ITOL, ITRACE, K
CHARACTER LAOPT, NORM
* .. Local Arrays
DOUBLE PRECISION ALGOPT(30), ATOL(1l), RTOL(1l), U(NPDE,NPTS),
+ UE(3,9), W(NW), X(NPTS), XI(1)
INTEGER IW(NIW)
* .. External Subroutines
EXTERNAL BNDARY, DO3PEK, DO3PLF, DO3PLP, NUMFLX
* .. Common blocks
COMMON /INIT/ELO, ERO, RLO, RRO, ULO, URO
COMMON /PARAMS /GAMMA
* .. Executable Statements
WRITE (NOUT,*) ’'DO3PXF Example Program Results’
* Skip heading in data file

READ (NIN, *)
* Problem parameters
GAMMA

RLO =
RRO =

1.4D0

.99924D0

.99242D0

ULO .99924D0*19.5975D0

URO -5.99242D0%*6.19633D0

ELO = 460.894D0/(GAMMA-1.0D0) + O0.5DO*RLO*19.5975D0#**2
ERO = 46.095D0/(GAMMA-1.0D0O) + O0.5DO*RRO*6.19633D0**2

o
o oo |l

* Initialise mesh
*
DO 20 I = 1, NPTS
X(I) = 1.0D0*(I-1.0D0)/(NPTS-1.0D0)
20 CONTINUE
*
* Initial values
*
DO 40 I = 1, NPTS
IF (X(I).LT.0.5D0) THEN
U(1,I) = RLO
U(2,I) = ULO
Uu(3,1) = ELO
ELSE IF (X(I).EQ.0.5D0) THEN
U(1,I) = 0.5D0#* (RLO+RRO)
U(2,I) = 0.5D0* (ULO+URO)
U(3,I) = 0.5D0O*(ELO+ERO)
ELSE
U(1l,I) = RRO
U(2,I) = URO
U(3,I) = ERO
END IF

40 CONTINUE

DO3PXF4 [NP3657/21]



D03 — Partial Differential Equations

60

80

100

*

ITRACE
ITOL =
NORM =
ATOL (1
RTOL (1
XI(1)
LAOPT =
IND = O
ITASK =
DO 60 I =1
ALGOPT (I
CONTINUE

S~k

30

) = 0.0DO

Theta integration

ALGOPT(1) = 2.0DO
ALGOPT(6) = 2.0DO
ALGOPT(7) = 2.0DO
Max. time step
ALGOPT(13) = 0.5D-2
TS = 0.0DO

TOUT = 0.035DO0
IFAIL = O

CALL DO3PLF (NPDE,TS,TOUT,DO3PLP,NUMFLX,BNDARY,U,NPTS,X,NCODE,

DO3PEK,NXI,XI,NEQN,RTOL,ATOL,ITOL,NORM, LAOPT,ALGOPT,W,
NW,IW,NIW,ITASK,ITRACE,IND,IFAIL)

WRITE (NOUT,99998) TS

WRITE (NOUT,99999)

Read exact data at output points

DO 80 I =1, 9
READ (NIN,*) UE(1,I), UE(2,I), UE(3,I)
CONTINUE

Calculate density, velocity and pressure

XK =0

DO 100 I = 15,
D = U(1,1I)
vV =U(2,1)/D

NPTS - 14, 14

P = D% (GAMMA-1.0DO)*(U(3,I)/D-0.5D0*V*%2)

K=K+ 1

WRITE (NOUT,99996) X(I), D, UE(1,K), V, UE(2,K), P, UE(3,K)
CONTINUE
WRITE (NOUT,99997) Iw(l), Iw(2), IW(3), IW(5)
STOP

99999 FORMAT
+

99998 FORMAT

99997 FORMAT

(4X,'X’,6X, APPROX D’,3X,’EXACT D’,4X,'APPROX V’,3X,'EXAC’',
'T V’,4X,'APPROX P’,3X,’EXACT P')
(/" T = ",F6.3,/)

(/' Number of integration steps in time = ’,I6,/’ Number ',

+ "of function evaluations = ’',I6,/’ Number of Jacobian ',
+ "evaluations =',I6,/’ Number of iterations = ’,I6)

99996 FORMAT (1X,E8.2,6(1X,E10.4))
END

SUBROUTINE BNDARY (NPDE,NPTS,T,X,U,NCODE,V,VDOT,IBND,G,IRES)
Scalar Arguments
DOUBLE PRECISION T

INTEGER IBND, IRES, NCODE, NPDE, NPTS
Array Arguments
DOUBLE PRECISION G(NPDE), U(NPDE,NPTS), V(x), VDOT(*), X(NPTS)

Scalars in Common
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DOUBLE PRECISION ELO, ERO, RLO, RRO, ULO, URO

* .. Common blocks
COMMON /INIT/ELO, ERO, RLO, RRO, ULO, URO
* .. Executable Statements ..

IF (IBND.EQ.0O) THEN
G(1l) = U(1,1) - RLO

G(2) = U(2,1) - ULO
G(3) = U(3,1) - ELO
ELSE
G(1l) = U(1,NPTS) - RRO
G(2) = U(2,NPTS) - URO
G(3) = U(3,NPTS) - ERO
END IF
RETURN
END

SUBROUTINE NUMFLX (NPDE,T,X,NCODE,V,ULEFT,URIGHT,FLUX,IRES)

* .. Scalar Arguments

DOUBLE PRECISION T, X

INTEGER IRES, NCODE, NPDE
* .. Array Arguments

DOUBLE PRECISION FLUX(NPDE), ULEFT(NPDE), URIGHT(NPDE), V(*)
* .. Scalars in Common
DOUBLE PRECISION GAMMA

* .. Local Scalars
DOUBLE PRECISION TOL
INTEGER IFAIL, NITER
* .. External Subroutines
EXTERNAL DO3PXF
* .. Common blocks
COMMON /PARAMS /GAMMA
* .. Executable Statements
IFAIL = O
TOL = 0.0DO
NITER = O
CALL DO3PXF(ULEFT,URIGHT,GAMMA,TOL,NITER,FLUX,IFAIL)
RETURN
END

9.2 Program Data

DO3PXF Example Program Data

0.5999D+01 0.1960D+02 0.4609D+03
0.5999D+01 0.1960D+02 0.4609D+03
0.5999D+01 0.1960D+02 0.4609D+03
0.5999D+01 0.1960D+02 0.4609D+03
0.5999D+01 0.1960D+02 0.4609D+03
0.1428D+02 0.8690D+01 0.1692D+04
0.1428D+02 0.8690D+01 0.1692D+04
0.1428D+02 0.8690D+01 0.1692D+04
0.3104D+02 0.8690D+01 0.1692D+04

9.3 Program Results

DO3PXF Example Program Results

T = 0.035
X APPROX D EXACT D APPROX V EXACT V APPROX P EXACT P

0.10E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.20E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.30E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.40E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.50E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.60E+00 0.1423E+02 0.1428E+02 0.8660E+01 0.8690E+01 0.1688E+04 0.1692E+04
0.70E+00 0.1425E+02 0.1428E+02 0.8672E+01 0.8690E+01 0.1688E+04 0.1692E+04
0.80E+00 0.1921E+02 0.1428E+02 0.8674E+01 0.8690E+01 0.1689E+04 0.1692E+04
0.90E+00 0.3100E+02 0.3104E+02 0.8675E+01 0.8690E+01 0.1687E+04 0.1692E+04
Number of integration steps in time = 697
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Number of function evaluations 1708
Number of Jacobian evaluations

Number of iterations = 2
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